Jadi intinya jika kita akan mencari persamaan garis singgung suatu kurva jika diketahui gradiennya m dan menyinggung di titik (x1,y1) maka kita gunakan persamaan
y-y1=m(x-x1)
Sedangkan jika diketahui 2 titik, misalnya (x1,y1) dan (x2,y2) maka untuk mencari persamaan garis singgung dari dua titik tersebut kita dapat gunakan persamaan
Agar lebih memahami mengenai materi persamaan garis singgung tersebut, perhatikan beberapa contoh soal berikut ini :
1. Tentukan persamaan garis singgung pada kurva y = x³ – 3x di titik (2, 3) ?
Jawab :
f(x) = x³ – 3x
f ‘(x) = 3x² – 3
m = f ‘(2) = 12 – 3 = 9
Jadi, persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y – 3 = 9 (x – 2)
y – 3 = 9x – 18
y = 9x – 15
Baca Juga :
Persamaan Garis Singgung Parabola
Pengertian Garis Singgung Lingkaran
2. Tentukan persamaan garis singgung pada kurva y = x4 – 7x2 + 20 di titik yang berabsis 2 ?
Jawab :
x = 2
y = x4 – 7x2 + 20 = y = 24 – 7.22 + 20 = 16 – 28 + 20 = 8
m =y’ = 4x3 – 14 x = 4.23 – 14.2 = 32 – 28 = 4
Jadi, persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y – 8 = 4(x – 2)
y – 8 = 4x – 8
y = 4x
3. Tentukan persamaan garis singgung pada kurva y = x3 + 10 di titik yang berordinat 18 ?
Jawab :
Ordinat adalah nilai y, maka
y = 18
x3 + 10 = 18
x3 = 8
x = 2
m = y’ = 3x2 = 3.22 = 12
Sehingga persamaan garis singgungnya
y – y1 = m(x – x1)
y – 18 = 12(x – 2)
y – 8 = 12x – 24
y = 12x – 16
5. Persamaan garis singgung pada kurva y = x4 – 5x2 + 10 di titik yang berordinat 6 adalah
Jawab :
ordinat = 6
x4 – 5x2 + 10 = 6
x4 – 5x2 + 4 = 0
(x2 – 1)(x2 – 4) = 0
(x + 1)(x – 1)(x + 2)(x – 2) = 0
x = -1 atau x = 1 atau x = -2 atu x = 2
untuk x = -1
m = 4x3 – 10x = -4 + 10 = 6
y – y1 = m(x – x1)
y – 6 = 6(x + 1)
y – 6 = 6x + 6
y = 6x + 12
Untuk x = 1
m = 4x3 – 10x = 4 – 10 = -6
y – y1 = m(x – x1)
y – 6 = -6(x – 1)
y – 6 = -6x + 6
y = -6x + 12
Untuk x = -2
m = 4x3 – 10x = 4(-2)3 – 10(-2) = 4(-8) + 20 = -32 + 20 = -12
y – y1 = m(x – x1)
y – 6 = -12(x + 2)
y – 6 = -12x – 24
y = -12x – 18
Untuk x = 2
m = 4x3 – 10x = 4.23 – 10.2 = 4.8 – 20 = 32 – 20 = 12
y – y1 = m(x – x1)
y – 6 = 12(x – 2)
y – 6 = 12x – 24
y = 12x – 18
Jadi, ada 4 persamaan garis singung, yaitu y = 6x + 12, y = -6x = 12, y = -12x – 18 dan y = 12x – 18
6. Persamaan garis singgung pada kurva y = 3x4 – 20 yang sejajar dengan garis y = 12x + 8 adalah
Jawab :
y = 3x4 – 20
y’ = 12x3
Persamaan garis yang sejajar dengan garis singgung adalah
y = 12x + 8
maka gradien garis ini adalah m1 = 12
Karena sejajar maka gradiennya sama sehingga gradien garis singgung (m2) adalah
m2 = m1 = 12
gradien garis singgung ini sama dengan turunan kurva sehingga
y’ = 12
12x3 = 12
x3 = 1
x = 1
maka y = 3x4 – 20 = 3 – 20 = – 17
Persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y + 17 = 12(x – 1)
y + 17 = 12x – 12
y = 12x – 29
7. Garis yang menyinggung kurva y = 12 – x4 dan tegak lurus dengan x – 32y = 48 mempunyai persamaan ….
Jawab :
y = 12 – x4
y’ = – 4x3
Sedangkan
x – 32y = 48
32y = x – 48
Garis ini memiliki gradien m1=1/32
Karena garis singgungnya tegak lurus dengan garis ini maka
m1.m2 = -1
(1/32)m2=-1
m2= -32
m2 ini adalah gradien garis singgung, sehingga sama dengan turunan
y’ = -32
– 4x3 = -32
x3 = 8
x = 2
y = 12 – x4 = 12-24 = -4
maka persamaan garis singgungnya
y – y1 = m(x – x1)
y + 4 = -32(x – 2)
y + 4 = -32x + 64
y = -32x + 60