Contoh Soal
Tentukan Gradien garis yang melalui titik ( 0 , 0 ) dengan titik A ( -20 , 25 )
Tentukan Gradien garis yang melalui titik A ( -4 , 7 ) dan B ( 2 , -2 )
Tentuka Gradien garis dengan persamaan garis 4x + 5y – 6 = 0
Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5
Persamaan garis lurus yang melalui titik ( 0 , -2 ) dan m = 3/4 adalah . . .
Tentukan persamaan garis G yang melalui garis ( 0 , 4 ) dan sejajar dengan garis H yang melalui titik pusat koordinat dan titik ( 3 ,2 )
Tentukan persamaan garis Z yang melalui titik ( 4 , 5 ) dan ( -5 , 3 )
Baca juga: Rumus Fungsi Persamaan Kuadrat Matematika.
Penyelesaian
1. Diketahui : Titik ( 0 , 0 ) dan Titik A ( -4 , 7 )
Ditanya : m = . . .?
Jawab :
m = b / a
= 25 / -20
= – 5/4
2.Diketahui : Titik A ( -4 , 7 ) dan TitikB ( 2 , -2 )
Ditanya : m = . . ?
Jawab :
m= y1 – y2 / x1 – x2
m = 7 – ( -2) / -4 -2
m = 9 / -6
m = – 3/2
3. Diketahui : persamaan 4x + 5y – 6 = 0
Ditanya : m = . . .?
m = -a / b
= -4 / 5
4.Diketahui :
titik pusat koordinat ( 0 , 0 )
m = -4/5
Ditanya : persamaan garis lurus = . . .?
Jawab :
y = mx
y = -4 / 5 x
-4y = 5x
-4y -5y = 0
<-> 4y + 5y = 0
5. Diketahui :
titik garis ( 0 , -2 )
m = 3 / 4
Ditanya :
Persamaan garis = . . .?
Jawab :
cara 1
y = mx + c
y = 3/4 x + ( -2 ) x4
< => 4y = 3x – 8
< = > -3x + 4y + 8 = 0
cara 2
y – y1 = m ( x – x1 )
y – ( -2 ) = 3/4 ( x – 0 )
y + 2 = 3/4 x x4
< = > 4y + 8 = 3x
< = > -3y + 4y + 8
6. Diketahui :
Titik koordinat ( 0 , 0 ) dan titik ( 3 , 2 )
Ditanya : Persamaan garis G = . . .?
Jawab :
Langkah pertama kita tentuka gradiennya terlebih dahulu , yaitu :
m = y2 – y1 / x2 – x1
= 2 – 0 / 3 – 0
= 2/ 3
Karena Garis G // H , maka gradiennya adalah 2/3 DAN Melalui titik ( 0 , 4 ) , maka persamaan garisnya adalah :
y = mx + c
y = 2 / 3 x + 4 x3
< = >3y = 2x + 12
< = > 3y – 2x – 12 = 0
< = > 2x – 3y + 12 = 0
7. Diketahui : titik A ( 4 , 5 )
titik B ( -5 , 3 )
Ditanya : Persamaan garis Z = . . .?
Jawab :
Cara 1
Langkah pertama yaitu mencari gradien terlebih dahulu :
m = y1 – y2 / x1 – x2
= 5 – 3 / 4 – ( -5 )
= 2 / 9
Selanjutnya yaitu memasukkan ke dalam rumus :
Persamaan garis melalui titik ( 4 , 5 ) dan bergradien 2 / 9
y – y1 = m ( x – x1 )
y – 5 = 2/9 ( x – 4 )
y – 5 = 2/9x – 8/ 9
y = 2/9 x – 8 / 9 + 5
y = 2/9 x – 8/9 + 45 /9
y = 2/9x – 37 / 9
Cara 2
Tanpa mencari gradien, yaitu dengan cara
y – 5 / 3 – 5 = x – 4 / -5 – 4
y – 5 / -2 = x – 4 / -9
-9 ( y – 5 ) = -2 ( x – 4 )
-9y + 45 = -2x + 8
-9y + 2x +45 – 8 = 0
2x – 9y + 37 : 9
< = > 2/9 x – y + 37 / 9
< = > y = 2/9x + 37 / 9
Demikian penjelasan mengenai rumus persamaan garis lurus dan beberapa contohnya. Semoga dengan penjelasan di atas, sedikit membantu memecahkan permasalahan dalam mengerjakan soal yang berhubungan dengan persamaan garis lurus. Inti dari persamaan garis lurus adalah memahami apa itu gradien dan memahami antara titik yang dilalui baik titik pusat koordinat , titik koordinat y ataupun titik koordinat x. Atau jika dilambangkan yaitu titik pusat koordinat ( 0 , 0 ) , titik koordinat ( x1 , y1 ) dan ( x2 , y 2 ) .
Semoga bermanfaat . . . .
", "url" : "https://www.utakatikotak.com/tag/Persamaan-Garis-Lurus-Beserta-Contoh-dan-Pembahasannya", "publisher" : { "@type" : "Organization", "name" : "utakatikotak.com" } }