<p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Pada kesempatan ini, kita akan mempelajari tentang fungsi turunan dan integral dalam matematika. Langsung saja kita simak penjelasannya.</span></span></span></p> <h2 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Fungsi Turunan</strong></span></span></span></h2> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Definisi</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Apabila fungsi y = f(x), maka turunan fungsi y terhadap x ditulis y'(x) atau f'(x). Dapat didefinisikan sebagai berikut :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Nilai fungsi turunan untuk x = a adalah :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i1.wp.com/rumushitung.com/wp-content/uploads/2020/09/rummus-2.png?ssl=1' /></span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Rumus-rumus Fungsi Turunan</strong></span></span></span></h3> <ul> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = a . x<sup>n</sup> → y’ = a . n . x<sup>n-1</sup></span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = a . U<sup>n</sup> → y’ = (a . n . U<sup>n-1</sup>) . U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = sin U → y’ = (cos U) . U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = cos U → y’ = (-sin U) . U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = tan U → y’ = (sec<sup>2</sup> U) . U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = cot U → y’ = (-csc<sup>2</sup> U) . U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = sec U → y’ = (sec U . tan U) . U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = csc U → y’ = (-csc U . cot U) . U’</span></span></span></li> </ul> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Sifat-sifat Fungsi Turunan</strong></span></span></span></h3> <ul> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = k → y’ = 0</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = U → y’ = U’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = U + V → y’ = U’ + V’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = U – V → y’ = U’ – V’</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = U . V → y’ = U’ . V + V’ . U</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y = U / V → y’ = (U’ . V – V’ . U) / V<sup>2</sup></span></span></span></li> </ul> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Gradien Garis Singgung</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-3.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Titik (x<sub>1</sub>, y<sub>1</sub>) adalah titik singgung garis g dengan kurva y = f(x).</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Gradien kemiringan garis singgung y = f(x) adalah m = f'(x<sub>1</sub>), maka persamaan garis singgungnya adalah :</span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>y – y<sub>1</sub> = m(x – x<sub>1</sub>)</span></span></span></h3> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Fungsi Naik dan Turun</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Interval fungsi naik dan fungsi turun, yakni apabila fungsi f'(x) > 0, maka disebut fungsi naik. Apabila fungsi f'(x) < 0, maka disebut fungsi turun.</span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Titik Stasioner</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-4.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-5.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Fungsi y = f(x) mengalami stasioner jika f'(x) = 0 dan terdapat titik-titik stasioner. Ada 3 jenis titik stasioner :</span></span></span></p> <ol> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Titik balik maksimum, syarat : f'(x) = 0 dan f”(x) < 0</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Titik balik minimum, syarat : f'(x) = 0 dan f”(x) > 0</span></span></span></li> <li style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Titik belok, syarat f'(x) = 0 dan f”(x) = 0</span></span></span></li> </ol> <h2 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Integral</strong></span></span></span></h2> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Definisi</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Integral merupakan anti turunan dan secara umum dapat dirumuskan :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-6.png?ssl=1' /></span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Sifat-sifat Integral</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i1.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-7.png?ssl=1' /></span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Rumus Dasar Integral</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i0.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-8.png?ssl=1' /></span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Teknik Integral</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>1. Metode Substitusi</strong></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Misalkan, u = g(x) dengan g(x) adalah fungsi yang memiliki turunan, maka :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Dimana F(u) merupakan abti-turunan dari f(u).</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>2. Metode Parsial</strong></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Metode parsial biasanya digunakan untuk mencari integral suatu fungsi yang tidak bisa dicari menggunakan metode substitusi. Jika u = f(x) dan v = g(x), maka berlaku rumus :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-10.png?ssl=1' /></span></span></span></p> <h3 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Aplikasi Integral</strong></span></span></span></h3> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>a. Menghitung Luas Daerah</strong></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Luas daerah yang dibatasi kurva dan sumbu x :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i1.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-1-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i1.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-2.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Luas daerah yang dibatasi dua buah kurva terhadap batas sumbu x :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-3-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Luas daerah yang dibatasi kurva dan sumbu y :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i0.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-4-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>b. Menghitung Volume Benda Putar</strong></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Volume benda putar terhadap sumbu x :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-5-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Volume benda putar terhadap sumbu y :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-6-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Volume daerah yang dibatasi dua buah kurva :</span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-8-1.png?ssl=1' /></span></span></span></p> <h2 style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><strong>Contoh Soal Turunan dan Integral</strong></span></span></span></h2> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i0.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-9-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i0.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-10-1.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i0.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-11.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i1.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-12.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i2.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-13.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'><img alt='' src='https://i0.wp.com/rumushitung.com/wp-content/uploads/2020/09/rumus-14.png?ssl=1' /></span></span></span></p> <p style='text-align: justify;'><span style='font-family:Arial,Helvetica,sans-serif'><span style='font-size:14px'><span style='color:#000000'>Demikian pembelajaran kali ini. Semoga dapat menambah wawasan dan pengetahuan dalam matematika.</span></span></span></p>