Menentukan Peluang Kejadian Majemuk Dan Kejadian Bersyarat

Oleh : Bos Babecom - 12 November 2021 14:00 WIB

Peluang kejadian majemuk yaitu peluang yang berasal dari lebih dari satu kejadian serta peluang kejadian bersyarat.

PELUANG KEJADIAN MAJEMUK

1. Peluang Gabungan Dua Kejadian

Jika diketahui A dan B merupakan dua kejadian yang berbeda sehingga peluang kejadian A ∪  B ditentukan menurut aturan :

P(A ∪ B) = P(A) + P(B) – P(A∩B)

contoh :

1. Jika terdapat sebuah dadu yang akan dilambungkan sekali, jika dimisalkan A adalah kejadain munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan prima. Maka tentukanlah peluang munculnya bilangan prima atau bilangan ganjil!

Jawab :

S = {1, 2, 3, 4, 5, 6}
A = bilangan ganjil yaitu {1, 3, 5} → P(A) = 3/6
B = bilangan prima yaitu {2, 3, 5} → P(B) =3/6
A∩B = {3, 5} → P{A∩B} = 2/6
P(A∪ B) = P(A) + P(B) – P(A∩B)
= 3/6 + 3/6  – 2/6 = 4/6 = 2/3
Maka peluang kejadian munculnya bilangan ganjil atau bilangan prima adalah 2/3

2.Jika kita mempunyai 1 set kartu bridge, selanjutnya akan kita ambil sebuah kartu dari 1 set kartu bridge tersebut. Tentukan peluang terambilnya kartu as atau kartu hati dari proses pengambilan kartu tersebut!

Jawab :

n(S) = 52 (banyaknya kartu dalam 1 set kartu bridge adalah 52)
A = kartu As, n(A) = 4 (Banyaknya kartu As dalam1 set kartu bridge 4)
P(A) =4/52
B = kartu Hati, n(B) = 13 (Banyaknya kartu Hati dalam1 set kartu bridge 13)
P(B) = 13/52
n(A∩B) = 1 (Banyaknya Kartu As dan  Hati dalam1 set kartu bridge 1)
P(A∩B) = 1/52
P(A∪ B) = P(A) + P(B) – P(A∩B) = 4/52 + 13/52 – 1/52 =16/52
Sehingga peluang kejadian terambilnya kartu As atau Hati  adalah 16/52

2.  Peluang Kejadian Saling Lepas / Kejadian Saling Asing

Jika terdapat dua kejadian A dan B, kedua kejadian ini dikatakan saling lepas jika kedua kejadian tersebut tidak mungkin terjadi bersama-sama. Hal ini berarti A∩B = 0  atau P(A∩B) = 0. Maka dalam  menghitung peluang kejadian saling asing ini kita dapat gunakan aturan :

Baca Juga :

Kombinasi Pada Peluang dan Contohnya

karena P (A∪ B) = P(A) + P(B) – P(A∩B) = P(A) + P(B) – 0
maka   P (A∪ B) = P(A) + P(B)

contoh :

Jika terdapat sebuah dadu dan akan kita lambungkan sekali, misalnya  A merupakan kejadian munculnya bilangan ganjil dan B merupakan kejadian munculnya bilangan genap. Tentukan peluang kejadian dari munculnya bilangan ganjil atau bilangan genap?

Jawab :

S = {1, 2, 3, 4, 5, 6}
A = bilangan ganjil yaitu {1, 3, 5} → P(A) = 3/6
B = bilangan genap yaitu {2, 4, 6} → P(B) =3/6
A∩B = {} → P(A∩B) = 0 (A dan B kejadian saling lepas)
P(A∪ B) = P(A) + P(B)
= 3/6 + 3/6 = 1
Maka peluang kejadian munculnya bilangan ganjil atau bilangan genap adalah 1

3. Peluang Kejadian Saling Bebas

Jika terdapat dua kejadian A dan B, dua kejadian ini dikatakan saling bebas jika terjadinya kejadian A tidak mempengaruhi terjadinya kejadian B  begitu juga sebaliknya. Atau terjadi atau tidaknya kejadian A tidak tergantung terjadi atau tidaknya kejadian B, begitu juga sebaliknya. Hal ini seperti digambarkan pada peristiwa pelemparan dua buah dadu sekaligus. Misalkan A merupakan kejadian munculnya dadu pertama angka 5 dan B merupakan kejadian munculnya dadu kedua angka 3. Sehingga kejadian A dan kejadian B merupakan dua kejadian yang saling bebas, yang dirumuskan sebagai berikut :

P(A∩B) = P(A) × P(B)

Perhatikan contoh berikut :

1. Diketahui terdapat dua buah dadu yang akan dilempar secara bersamaan, dari pelemparan tersebut tentukan peluang munculnya mata dadu 3 untuk dadu pertama dan mata dadu 5 untuk dadu kedua?

jawab :

Kejadian pada soal ini merupakan dua kejadian saling bebas, hal ini disebabkan karena munculnya mata dadu 3 pada dadu pertama tidak terpengaruh kejadian munculnya mata dadu 5 pada dadu kedua.
S = {(1, 1), (1, 2), (1, 3), ….., (6, 6)} → n(S) = 36
Misalkan  kejadian munculnya mata dadu 3 pada dadu pertama adalah A, sehingga:
A = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)} → n(A) = 6  P(A) = 6/36 = 1/6
Misalkan  kejadian munculnya mata dadu 5 pada dadu kedua adalah B, sehingga:
B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5)} → n(B) = 6  P(B) = 6/36 = 1/6

P(A∩B) = P(A) × P(B) = 1/6  × 1/6  = 1/36

Sehingga  peluang munculnya mata dadu 3 pada dadu pertama dan mata dadu 5
pada dadu kedua adalah  1/36

2. Terdapat dua buah kotak, Kotak A berisi 5 bola merah dan 3 bola kuning sedangkan Kotak B berisi 5 bola merah dan 2 bola kuning. Jika akan diambil sebuah bola secara acak pada masing-masing kotak tersebut. Tentukan peluang terambilnya bola merah dari kotak A dan terambilnya bola kuning dari kotak B!

Jawab :

Kotak A
n(S) = 8C1 = 8!/(1!(8-1)!) = 8!/7!  =8.7!/7!=  8
Dimisalkan kejadian terambilnya bola merah dari kotak A adalah A, sehingga :
n(A) = 5C1 = 5!/(1!(5-1)!)= 5!/4! = 5,    P(A) = n(A)/n(S) = 5/8
Kotak B
n(S) = 7C1 = 7!/(1!(7-1)!)  = 7!/6!  =   7

Dimisalkan kejadian terambilnya bola kuning dari kotak B adalah B, sehingga :
n(B) = 2C1 = 2!/(1!(2-1)!) =2!/1!= 2,    P(B) = n(B)/n(S)= 2/7
Jadi P(A∩B) = P(A) × P(B) = 5/8  × 2/7 = 5/28

PELUANG KEJADIAN BERSYARAT

Jika diketahui dua buah kejadian A dan B, dua kejadian ini dikatakan kejadian bersyarat/kejadian yang saling bergantung  jika terjadi atau tidak terjadinya kejadian A akan mempengaruhi terjadi atau tidak terjadinya kejadian B. Sehingga untuk peluang terjadinya kejadian A dengan syarat kejadian B telah terjadi dapat dihitung menggunakan rumus :

P(A/B) =    P(A∩B)/P(B) dimana  P(B) ≠ 0

sedangkan peluang terjadinya kejadian B dengan syarat kejadian A telah terjadi dapat dihitung menggunakan rumus :

P(B/A) =    P(A∩B)/P(A) dimana P(A) ≠ 0

contoh :

Terdapat sebuah kotak berisi 5 bola merah dan 3 bola kuning. Jika akan diambil sebuah bola secara acak berturut-turut sebanyak dua kali tanpa pengembalian . Tentukan peluang terambilnya keduanya bola merah!

Penyelesaian:
Misalkan kejadian terambilnya bola merah pada pengambilan pertama adalah A, sehingga :
P(A) = n(A)/n(S)= 5/8

Misalkan  kejadian terambilnya bola merah pada pengambilan kedua adalah B, sehingga :
P(B/A) = n(B/A)/n(S) = 4/7
P(A∩B) = P(A) × P(B/A) =  5/8  × 4/7 =5/14

Tag

Artikel Terkait

Kuis Terkait

Video Terkait

Cari materi lainnya :