HUBUNGAN KATABOLISME KARBOHIDRAT, PROTEIN DAN LEMAK

Oleh : Rizki Mumpuni - 06 August 2021 15:00 WIB

Pengertian Katabolisme

src="https://4.bp.blogspot.com/-cEcdB2TdTw0/WRfD-yySjSI/AAAAAAAACmw/mzUJzFuZ9gY0Lo7o8YzgApjPPQfSV2RqACLcB/s400/Katabolisme.gif" style="height:400px; width:400px" />

Katabolisme adalah reaksi perombakan, pemecahan atau penguraian senyawa kompleks (organik) menjadi sederhana (anorganik) yang menghasilkan energi. Contohnya katabolisme karbohidrat, protein dan lemak.

Source : Youtube Utak Atik Otak

URL : https://www.youtube.com/watch?v=oU__dfyaNlg

Artikel ini membahas tentang hubungan katabolisme karbohidrat, katabolisme protein dan katabolisme protein. Semua katabolisme tersebut saling berkaitan untuk menghasilkan energi. Tapi.. Untuk dapat digunakan oleh sel, energi yang dihasilkan harus diubah menjadi ATP  (Adenosin Tri Phospat). ATP merupakan gugus adenin yang berikatan dengan tiga gugus fosfat. Pelepasan gugus fosfat menghasilkan energi yang digunakan langsung oleh sel, yang digunakan untuk melangsungkan reaksi-reaksi kimia, pertumbuhan, transportasi, gerak, reproduksi, dan lain-lain.

Contoh katabolisme adalah respirasi sel, yaitu proses penguraian bahan makanan yang bertujuan menghasilkan energi. Sebagai bahan baku respirasi adalah karbohidrat, asam lemak, dan asam amino dan sebagai hasilnya adalah CO2 (karbon dioksida, air dan energi).

Respirasi dilakukan oleh semua sel hidup, seperti sel hewan dan sel tumbuhan.  

Katabolisme Karbohidrat

Struktur karbohidrat

Karbohidrat merupakan sumber energi uatama dan sumber serat utama. Karbohidrat mempunyai tiga unsur, yaitu karbon, hydrogen dan oksigen. Jenis-jenis karbohidrat sangat beragam. Karbohidrat dibedakan satu dengan yang lain berdasarkan susunan atom-aromnya, panjang pendeknya rantai serta jenis ikatan.

Dari kompleksitas strukturnya karbohidrat dibedakan menjadi karbohidarat sederhana (monosakarida  dan disakarida)dan karbohidrat dengan struktur yang kompleks (polisakarida). Selain kelompok tersebut juga masih ada oligosakarida yang memiliki monosakarida lebih pendek dari polisakarida, contohnya adalah satkiosa, rafinosa, fruktooligosakarida, dan galaktooligosakarida

Fungsi Karbohidrat

  1. Simpanan energi, bahan bakar dan senyawa antara metabolism

  2. Bagian dari kerangka struktural dari pembentuk RNA dan DNA

  3. Merupakan elemen struktural dari dinding sel tanaman maupun bakteri.

  4. Identitas sel, berikatan dengan protein atau lipid dan berfungsi dalam proses pengenalan antar sel.

Proses Katabolisme Karbohidrat

Pada Proses katabolisme  karbohidrat, sering disebut dengan glikolisis yaitu proses degradasi.  Proses degradasi 1 molekul glukosa (C6) menjadi 2 molekul piruvat (C3) yang terjadi dalam serangkaian reaksi enzimatis   menghasilkan energi bebas dalam bentuk ATP dan NADH  Proses glikolisis terdiri dari 10 langkah reaksi yang terbagi  menjadi 2 Fase, yaitu:

  1. 5 langkah pertama yang disebut fase preparatory

  1. 5 langkah terakhir yang disebut fase payoff

Fase I memerlukan 2 ATP dan  Fase II menghasilkan 4 ATP dan 2 NADP, sehingga total degradasi Glukosa menjadi 2 molekul piruvat   menghasilkan 2 molekul ATP dan 2 molekul NADP.

Pada tahap pertama, molekul D-Glukosa diaktifkan bagi reaksi berikutnya dengan fosforilasi pada posisi 6, menghasilkan glukosa-6-fosfat dengan memanfaatkan ATP Reaksi ini bersifat tidak dapat balik. Enzim heksokinase merupakan katalis dalam reaksi tersebut dibantu oleh ion Mg2+ sebagai kofaktor.

Reaksi kedua ialah  isomerasi, yaitu pengubahan glukosa-6-fosfat, yang merupakan suatu aldosa, menjadi fruktosa-6-fosfat, yang merupakan suatu ketosa, dengan enzim fosfoglukoisomerase dan dibantu oleh ion Mg2+.

Tahap ketiga adalah fruktosa-6-fosfat diubah menjadi fruktosa-1,6-difosfat oleh enzim fosoffruktokinase dibantu oleh ion Mg2+ sebagai kofaktor. Dalam reaksi ini,gugus fosfat dipindahkan dari ATP ke fruktosa-6-fosfat pada posisi 1.

Reaksi tahap keempat dalam rangkaian reaksi glikolisis adalah penguraian molekul fruktosa-1,6-difosfat membentuk dua molekul triosa fosfat, yaitu dihidroksi aseton fosfat dan D-gliseraldehid-3-fosfat oleh enzim aldolase fruktosa difosfat atau enzim aldolase.  Hanya satu di antara dua triosa fosfat yang dibentuk oleh aldolase, yaitu gliseraldehid-3-fosfat, yang dapat langsung diuraikan pada tahap reaksi glikolisis berikutnya. Tetapi, dihidroksi aseton fosfat dapat dengan cepat dan dalam reaksi dapat balik, berubah menjadi gliseraldehid-3-fosfat oleh enzim isomerase triosa fosfat.

Tahap kelima adalah reaksi oksidasi gliseraldehid-3fosfat menjadi asam 1,3 difosfogliserat. Dalam reaksi ini digunakan koenzim NAD+, sedangkan gugus fosfat diperoleh dari asam fosfat. Enzim yang mengkatalisis dalam tahap ini adalah dehidrogenase gliseraldehida fosfat. Pada tahap ini, enzim kinase fosfogliserat mengubah asam 1,3-difosfogliserat menjadi asam 3-fosfogliserat.
 

alt="Proses glikolisis terdiri dari 10 tahapan" src="https://3.bp.blogspot.com/-VSIqQv7JyHU/T9bvzGpAxII/AAAAAAAAAJg/3TNFuJaxGVo/s640/New+Picture.png" style="height:434px; width:400px" title="Proses Glikolisis" />

Diagram proses glikolisis (terdiri dari 10 tahapan)

Dalam reaksi ini terbentuk satu molekul ATP dari ADP dan memerlukan ion Mg2+ sebagai kofaktor. Pada tahap ini, terjadi pengubahan asam 3-fosfoliserat menjadi asam 2-fosfogliserat. Reaksi ini melibatkan pergeseran dapat balik gugus fosfat dari posisi 3 ke posisi 2. Reaksi ini dikatalisis oleh enzim fosfogliseril mutase dengan ion Mg2+ sebagai kofaktor.

Reaksi berikutnya adalah reaksi pembentukan asam fosfoenol piruvat dari asam 2-fosfogliserat dengan katalisis enzim enolase dan ion Mg2+ sebagai kofaktor. Reaksi pembentukan asam fosfoenol piruvat ini ialah reaksi dehidrasi.

Tahap terakhir pada glikolisis ialah reaksi pemindahan gugus fosfat berenergi tinggi dari fosfoenolpiruvat ke ADP yang dikatalisis oleh enzim piruvat kinase sehingga terbentuk molekul ATP dan molekul asam piruvat.

alt="Proses katabolisme terdiri atas glikolisis, siklus krebs dan transpor elektron" src="https://1.bp.blogspot.com/-yt92OomXoW0/T9dsWYhRdvI/AAAAAAAAAR8/4WLVZAKPbO4/s640/New+Picture+(7).png" style="height:380px; width:400px" title="Proses Katabolisme" />

Gambar proses katabolisme terdiri atas glikolisis, siklus krebs dan transpor elektron

Katabolisme Lemak

Struktur Lemak

Berdasarkan struktur dan fungsinya, lemak dibagi menjadi bermacam-macam:

  1. Asam-asam lemak : Merupakan suatu rantai hidrokarbon yang mengandung satu gugus metal pada salah satu ujungnya dan salah satu gugus asam atau karboksil. Secara umum formula kimia suatu asam lemak adalah CH3(CH2)nCOOH, dan  biasanya kelipatan dua.

  2. Rantai pendek : rantai hidrokarbonnya terdiri dari jumlah atom karbon genap 4-6 atom.

  3. Rantai sedang : 8-12 atom

  4. Rantai panjang : 14-26 atom.

Semua asam lemak lemak ini merupakan asam lemak jenuh. Sedangkan untuk asam lemak tidak jenuh, adalah lemak yang mempunayi ikatan rangkap atau lebih misalnya palmitoleat, linolenat, arakhidat, dan lain sebagainya. CH3(CH2)7CH=CH(CH2)7COOH (oleat). Turunan-turunan asam lemak : merupakan suatu komponen yang terbentuk dari satu atau lebih asam lemak yang mengandung alcohol dan disebut ester. Terdapat dua golongan ester yaitu gliserol ester dan cholesterol ester.

Gliserol ester

Gliserol ester erbentuk melalui metabolism karbohidrat yang mengandung tiga atom karbon, yang salah satu ataom karon bersatu dengan salah satu gugus alcohol. Reaksi kondensasi antara gugus karboksil dengan gugus alcohol dari gliserol akan membentuk gliserida, tergantung dari jumlah asam lemak dari gugus alkohol yang membentuk raeksi kondensasi. (monogliserida, digliserida, trigliserida)

Kolesterol ester

Kolesterol ester terbentuk melelui reaksi kondensasi, sterol, kolesterol, dan sam lemak terikat dengan gugus alcohol.

Glikolipid

Glikolipid merupakan komponen yang mempunayi sifat serperti lipid, terdiri dari satu atu lebih komponen gula, dan biasanya glukosa dan galaktosa.

Sterol

Sterol merupakan golongan lemak yang larut dalam alcohol, Mislanya kolesterol sterol. Berbeda dengan struktur lainnya sterol mempunyai nucleus dengan empat buah cincin yang saling berhubunga, tiga diantaranya mengandung 6 atom karbon, sedang yang keempat mengandung 5 atom karbon.

Fungsi Lemak

  1. Sebagai penyusun struktur  membran sel Dalam hal ini lipid berperan sebagai barier untuk sel dan mengatur aliran material-material.

  2. Sebagai cadangan energi Lipid disimpan sebagai jaringan adiposa

  3. Sebagai hormon dan vitamin, hormon mengatur komunikasi antar sel, sedangkan vitamin membantu regulasi proses-proses biologis

Proses Katabolisme Lemak

Lemak merupakan salah satu sumber energy bagi tubuh, bahkan kandungan energinya paling tinggi diantara sumber energy yang lain, yaitu sebesar  9kkal/gram. Energi hasil pemecahan lemak dimulai saat lemak berada didalam kebutuhan energi.

Pemecahan atau katabolisme lemak dimulai saat lemak berada didalam system pencernaan makanan. Lemak akan dipecah menjadi asam lemak dan gliserol. Dari kedua senyawa tersebut, asam lemak sebagian mengandung sebagian besar energi, yaitu sekitar 95%, sedangkan gliserol hanya mengandung 5% dari besar energi lemak.

Untuk dapat menghasilkan energi, asam lemak akan mengalami oksidasi yang terjadi didalm mitokondria, sedangkan gliserol dirombak secara glikolisis. Gliserol dalam glikolisis akan diubah kembali menjadi dihidroksi aseton fosfat. Oksidasi asam lemak juga melalui lintasan akhir yang dilalui karbohidrat, yaitu siklus krebs.

Setelah berada didalam mitokondria, asam lemak akan mengalami oksidasi untuk menghasilkan energi. Oksidasi asam lemak terjadi dalam dua tahap, yaitu oksidasi asam lemak yang menghasilkan residu asetil KoA dan oksidasi asetil KoA menjadi karbon dioksida melalui siklus krebs.

Katabolisme Protein

Struktur Protein

Dilihat dari tingkat organisasi struktur, protein dapat diklasifikasikan ke dalam empat kelas dengan urutan kerumitan yang berkurang. Kelas-kelas itu adalah :

  • Struktur primer:  Ini adalah hanya urutan asam amino di dalam rantai protein. Struktur primer protein dilakukan oleh ikatan-ikatan (peptida) yang kovalen.

  • Struktur sekunder:  Hal ini merujuk ke banyaknya struktur helix-aa atau lembaran berlipatan-B setempat yang berhubungan dengan struktur protein secara keseluruhan. Struktur sekunder protein diselenggarakan oleh ikatan-ikatan hidrogen antara oksigen karbonil dan nitrogen amida dari rantai polipeptida.

  • Struktur tersier: Hal ini menunjuk ke cara rantai protein ke dalam protein berbentuk bulat dilekukkan dan dilipat untuk membentuk struktur tiga-dimensional secara menyeluruh dari molekul protein. Struktur tersier diselenggarakan oleh interaksi antara gugus-fufus R dalam asam amino.

  • Struktur kuartener. Banyak protein ada sebagai oligomer, atau molekul-molekul besar terbentuk dari pengumpulan khas dari subsatuan yang identik atau berlainan yang dikenal dengan protomer.

Fungsi Protein

  1. Membentuk jaringan/ bagian tubuh lain

  2. Pertumbuhan (bayi, anak, pubertas)

  3. Pemeliharaan (dewasa)

  4. Membentuk sel darah

  5. Membentuk hormon, enzim, antibody,dll

  6. Memberi tenaga (protein sparing efek)

  7. Pengaturan (enzim, hormone)

Proses Katabolisme Protein

Para proses katabolisme protein asam-asam amino tidak dapat disimpan oleh tubuh. Jika jumlah asam amino berlebihan atau terjadi kekurangan sumber energi lain (karbohidrat dan protein), tubuh akan menggunakan asam amino sebagai sumber energi. Tidak seperti karbohidrat dan lipid, asam amino memerlukan pelepasan gugus amina. Gugus amin ini kemudian dibuang karena bersifat toksik bagi tubuh.

Terdapat  2 tahap pelepasan gugus amin dari asam amino, yaitu:

  1. Transaminasi: Enzim aminotransferase memindahkan amin kepada α ketoglutarat menghasilkan glutamat atau kepada oksaloasetat menghasilkan aspartat

  2. Deaminasi oksidatif: Pelepasan amin dari glutamat menghasilkan ion ammonium Gugus-gugus amin dilepaskan menjadi ion amonium (NH4+) yang selanjutnya masuk ke dalam siklus urea di hati. Dalam siklus ini dihasilkan urea yang selanjutnya dibuang melalui ginjal berupa urin.

Proses yang terjadi di dalam siklus urea digambarkan terdiri atas beberapa tahap yaitu:

  1. Melalui peran enzim karbamoil fosfat sintase I, ion amonium bereaksi dengan CO2 menghasilkan karbamoil fosfat.

  2. Melalui raksi ini diperlukan energi dari ATP

  3. Melalui peran enzim ornitin transkarbamoilase, karbamoil fosfat bereaksi dengan L-ornitin menghasilkan L-sitrulin dan gugus fosfat dilepaskan.

  4. Melalui peran enzim argininosuksinat sintase, L-sitrulin bereaksi dengan L-aspartat menghasilkan L-argininosuksinat. Reaksi ini membutuhkan energi dari ATPDengan peran enzim argininosuksinat liase, L-argininosuksinat dipecah menjadi fumarat dan L-arginin

  5. Dengan peran enzim arginase, penambahan H2O terhadap L-arginin akan menghasilkan L-ornitin dan urea.

Hubungan Katabolisme Antara Karbohidrat, Lemak, & Protein

Kamu sudah mengetahui bahwa di dalam sel reaksi metabolisme tidak terpisah satu sama lain yaitu membentuk suatu jejaring yang saling berkaitan. Di dalam tubuh manusia terjadi metabolisme karbohidrat, protein, dan lemak. Bagaimana keterkaitan ketiganya? Pada bagan terlihat karbohidrat, protein, dan lemak bertemu pada jalur siklus Krebs dengan masukan asetil koenzim A.
 

alt="Hubungan katabolisme karbohidrat, protein dan lemak" src="https://4.bp.blogspot.com/-g43TydSK8s4/WcHLXjuA8iI/AAAAAAAACxw/CM1UUMxS4PMxJUBpe7NK7yHhUdBrDlsIwCLcBGAs/s640/Hubungan_Katabolisme_Karbohidrat_Lemak_Protein.jpg" style="height:640px; width:400px" title="Hubungan Katabolisme" />

Gambar hubungan katabolisme karbohidrat, protein dan lemak

Tahukah kamu bahwa Asetil Ko-A sebagai bahan baku dalam siklus Krebs untuk menghasilkan energi yang berasal dari katabolisme karbohidrat, protein, maupun lemak. Titik temu dari berbagai jalur metabolisme ini berguna untuk saling menggantikan “bahan bakar” di dalam sel, Hasil katabolisme karbohidrat, protein, dan lemak juga bermanfaat untuk menghasilkan senyawa- senyawa lain yaitu dapat membentuk ATP, hormon, komponen hemoglobin ataupun komponen sel lainnya.

Lemak (asam heksanoat) lebih banyak mengandung hidrogen terikat dan merupakan senyawa karbon yang paling banyak tereduksi, sedangkan karbohidrat (glukosa) dan protein (asam glutamat) banyak mengandung oksigen dan lebih sedikit hidrogen terikat adalah senyawa yang lebih teroksidasi.

Senyawa karbon yang tereduksi lebih banyak menyimpan energi dan apabila ada pembakaran sempurna akan membebaskan energi lebih banyak karena adanya pembebasan elektron yang lebih banyak. Jumlah elektron yang dibebaskan menunjukkan jumlah energi yang dihasilkan. Perlu kamu ketahui pada jalur katabolisme yang berbeda glukosa dan asam glutamat dapat menghasilkan jumlah ATP yang sama yaitu 36 ATP.

Sedangkan katabolisme asam heksanoat dengan jumlah karbon yang sama dengan glukosa (6 karbon) menghasilkan 44 ATP, sehingga jumlah energi yang dihasilkan pada lemak lebih besar dibandingkan dengan yang dihasilkan pada karbohidrat dan protein. Sedangkan jumlah energi yang dihasilkan protein setara dengan jumlah yang dihasilkan karbohidrat dalam berat yang sama.

Dari penjelasan itu dapat disimpulkan jika kita makan dengan mengkonsumsi makanan yang mengandung lemak akan lebih memberikan rasa kenyang jika dibandingkan dengan protein dan karbohidrat. Karena rasa kenyang tersebut disebabkan oleh kemampuan metabolisme lemak untuk menghasilkan energi yang lebih besar.

Tag

Artikel Terkait

Kuis Terkait

Video Terkait

Cari materi lainnya :